La electrónica molecular, a veces llamada moletrónica, es la rama de la ciencia que estudia el uso de moléculas orgánicas en la electrónica.

Los primeros trabajos acerca de la transferencia de cargas eléctricas entre moléculas fueron realizados por Robert Mulliken y Albert Szent-Gyorgi en 1940. Sin embargo, el primer dispositivo moletrónico no fue desarrollado hasta 1974, año en el que se construye un biestable de melanina. En 1988 fue descrita una molécula capaz de actuar como un transistor de efecto campo.

Los recientes avances en nanotecnología y el descubrimiento de polímeros conductores y semiconductores, merecedor del premio Nobel de Química del año 2000, han permitido avances espectaculares en la materia. Dispositivos como los diodos orgánicos emisores de luz (OLED por sus siglas en inglés), transistores orgánicos de efecto campo (OFET por sus siglas en inglés) o paneles solares orgánicos son ya conocidos en la industria.

Las principales ventajas de la electrónica molecular frente a la electrónica tradicional basada en materiales inorgánicos como el silicio son facilidad de fabricación, maleabilidad, bajo coste y mayor escala de integración.

Gran parte de nuestra actividad cotidiana implica la utilización de dispositivos que funcionan gracias a componentes electrónicos. Estos componentes se han perfeccionado durante las últimas cuatro décadas utilizando básicamente materiales semiconductores inorgánicos, entre los cuales el silicio es el protagonista indiscutible. Sin embargo, la tecnología del silicio tiene sus limitaciones y, desde principios de los años noventa, se está dedicando un gran esfuerzo científico al desarrollo de una nueva electrónica basada en la utilización de materiales moleculares electroactivos. Estos materiales son de naturaleza orgánica, incluyendo desde moléculas de pequeño tamaño (10 átomos) hasta polímeros (macromoléculas), y son capaces de responder a estímulos eléctricos y luminosos de forma similar a los conductores y semiconductores inorgánicos.

Sin lugar a dudas, el acontecimiento que más ha contribuido al desarrollo de los materiales moleculares electroactivos fue el descubrimiento de los polímeros conductores (plásticos que conducen la electricidad), merecedor del premio Nobel de Química del año 2000. Siempre nos han enseñado, y nuestra experiencia cotidiana así lo confirma, que los plásticos, a diferencia de los metales, no conducen la corriente eléctrica. De hecho, los plásticos se utilizan para aislar los hilos de cobre en el cableado eléctrico. Esta perspectiva ha cambiado en los últimos años con el descubrimiento de que ciertos plásticos (polímeros conjugados con alternancia de simples y dobles enlaces carbonocarbono, Nos encontramos, por tanto, ante nuevos materiales que nos ofrecen las propiedades eléctricas y ópticas de los metales y semiconductores, junto con las atractivas propiedades mecánicas, las ventajas de procesado y el bajo coste económico de los polímeros. A estas ventajas hay que añadir el gran potencial de la síntesis química para modificar las propiedades del material mediante cambios en la estructura química de los sistemas componentes.

Los materiales moleculares electroactivos están siendo desarrollados industrialmente para su utilización en aplicaciones tan diversas como baterías orgánicas, músculos artificiales, pantallas de teléfonos móviles, células solares, narices electrónicas, etc …

https://ociointeligente.wordpress.com/2011/11/17/el-futuro-sustituto-del-silicio-grafeno-o-molibdenita/
 
https://ociointeligente.wordpress.com/2011/11/03/grafeno-el-material-del-futuro/