“El simple aleteo de una mariposa puede cambiar el mundo”.

El “efecto mariposa” es un concepto que hace referencia a la noción del tiempo a las condiciones iniciales dentro del marco de la teoría del caos. La idea es que, dadas unas condiciones iniciales de un determinado sistema caótico, la más mínima variación en ellas puede provocar que el sistema evolucione en formas completamente diferentes. Sucediendo así que, una pequeña perturbación inicial, mediante un proceso de amplificación, podrá generar un efecto considerablemente grande a mediano o corto plazo de tiempo.

Un ejemplo claro sobre el efecto mariposa es soltar una pelota justo sobre la arista del tejado de una casa varias veces; pequeñas desviaciones en la posición inicial pueden hacer que la pelota caiga por uno de los lados del tejado o por el otro, conduciendo a trayectorias de caída y posiciones de reposo final completamente diferentes. Cambios minúsculos que conducen a resultados totalmente divergentes.

Su nombre proviene de las frases: “el aleteo de las alas de una mariposa se puede sentir al otro lado del mundo” (proverbio chino) o “el aleteo de las alas de una mariposa pueden provocar un Tsunami al otro lado del mundo” así como también “El simple aleteo de una mariposa puede cambiar el mundo”.

Este nombre también fue acuñado a partir del resultado obtenido por el meteorólogo y matemático Edward Lorenz al intentar hacer una predicción del clima atmosférico.

Teoría del caos es la denominación popular de la rama de las matemáticas, la física y otras ciencias que trata ciertos tipos de sistemas dinámicos muy sensibles a las variaciones en las condiciones iniciales. Pequeñas variaciones en dichas condiciones iniciales pueden implicar grandes diferencias en el comportamiento futuro; complicando la predicción a largo plazo. Esto sucede aunque estos sistemas son en rigor determinísticos, es decir; su comportamiento puede ser completamente determinado conociendo sus condiciones iniciales.

Los sistemas dinámicos se pueden clasificar básicamente en:

  •     Estables
  •     Inestables
  •     Caóticos

Un sistema estable tiende a lo largo del tiempo a un punto, u órbita, según su dimensión (atractor o sumidero). Un sistema inestable se escapa de los atractores. Y un sistema caótico manifiesta los dos comportamientos. Por un lado, existe un atractor por el que el sistema se ve atraído, pero a la vez, hay “fuerzas” que lo alejan de éste. De esa manera, el sistema permanece confinado en una zona de su espacio de estados, pero sin tender a un atractor fijo.

Una de las mayores características de un sistema inestable es que tiene una gran dependencia de las condiciones iniciales. De un sistema del que se conocen sus ecuaciones características, y con unas condiciones iniciales fijas, se puede conocer exactamente su evolución en el tiempo. Pero en el caso de los sistemas caóticos, una mínima diferencia en esas condiciones hace que el sistema evolucione de manera totalmente distinta. Ejemplos de tales sistemas incluyen el Sistema Solar, las placas tectónicas, los fluidos en régimen turbulento y los crecimientos de población.

Atractores

Una manera de visualizar el movimiento caótico, o cualquier tipo de movimiento, es hacer un diagrama de fases del movimiento. En tal diagrama el tiempo está implícito y cada eje representa una dimensión del estado. Por ejemplo, un sistema en reposo será dibujado como un punto, y un sistema en movimiento periódico será dibujado como un círculo.

Algunas veces el movimiento representado con estos diagramas de fases no muestra una trayectoria bien definida, sino que ésta es errabunda alrededor de algún movimiento bien definido. Cuando esto sucede se dice que el sistema es atraído hacia un tipo de movimiento, es decir, que hay un atractor.

De acuerdo a la forma en que sus trayectorias evolucionen, los atractores pueden ser clasificados como periódicos, cuasi-periódicos y extraños. Estos nombres se relacionan exactamente con el tipo de movimiento que provocan en los sistemas. Un atractor periódico, por ejemplo, puede guiar el movimiento de un péndulo en oscilaciones periódicas; sin embargo, el péndulo seguirá trayectorias erráticas alrededor de estas oscilaciones debidas a otros factores menores no considerados.

Atractores extraños

La mayoría de los tipos de movimientos mencionados en la teoría anterior sucede alrededor de atractores muy simples, tales como puntos y curvas circulares llamadas ciclos límite. En cambio, el movimiento caótico está ligado a lo que se conoce como atractores extraños, ellos que pueden llegar a tener una enorme complejidad como, por ejemplo, el modelo tridimensional del sistema climático de Lorenz, que lleva al famoso atractor de Lorenz. El atractor de Lorenz es, quizá, uno de los diagramas de sistemas caóticos más conocidos, no sólo porque fue uno de los primeros, sino también porque es uno de los más complejos y peculiares, pues desenvuelve una forma muy peculiar más bien parecida a las alas de una mariposa.

Los atractores extraños están presentes tanto en los sistemas continuos dinámicos (tales como el sistema de Lorenz) como en algunos sistemas discretos (por ejemplo el mapa Hènon). Otros sistemas dinámicos discretos tienen una estructura repelente, de tipo Conjunto de Julia, la cual se forma en el límite entre las cuencas de dos puntos de atracción fijos. Julia puede ser sin embargo un atractor extraño. Ambos, atractores extraños y atractores tipo Conjunto de Julia, tienen típicamente una estructura de fractal.

El teorema de Poincaré-Bendixson muestra que un atractor extraño sólo puede presentarse como un sistema continuo dinámico si tiene tres o más dimensiones. Sin embargo, tal restricción no se aplica a los sistemas discretos, los cuales pueden exhibir atractores extraños en dos o incluso una dimensión.

Algo más de atractores

Los atractores extraños son curvas del espacio de las fases que describen la trayectoria elíptica de un sistema en movimiento caótico. Un sistema de estas características es plenamente impredecible, saber la configuración del sistema en un momento dado no permite predecir con veracidad su configuración en un momento posterior. De todos modos, el movimiento no es completamente aleatorio.

En la mayoría de sistemas dinámicos se encuentran elementos que permiten un tipo de movimiento repetitivo y, a veces, geométricamente establecido. Los atractores son los encargados de que las variables que inician en un punto de partida mantengan una trayectoria establecida, y lo que no se puede establecer de una manera precisa son las oscilaciones que las variables puedan tener al recorrer las órbitas que lleguen a establecer los atractores. Por ejemplo, es posible ver y de cierta manera prever la trayectoria de un satélite alrededor de la Tierra; lo que aparece, en este caso, como algo indeterminado son los movimientos e inconvenientes varios que se le pueden presentar al objeto para efectuar este recorrido.

Aplicaciones

La Teoría del Caos y la matemática caótica resultaron ser una herramienta con aplicaciones a muchos campos de la ciencia y la tecnología. Gracias a estas aplicaciones el nombre se torna paradójico, dado que muchas de las prácticas que se realizan con la matemática caótica tienen resultados concretos porque los sistemas que se estudian están basados estrictamente con leyes deterministas aplicadas a sistemas dinámicos.

En Internet se desarrolla este concepto en Teoría del Caos, el tercer paradigma, de cómo la estadística inferencial trabaja con modelos aleatorios para crear series caóticas predictoras para el estudio de eventos presumiblemente caóticos en las Ciencias Sociales. Por esta razón la Teoría del Caos ya no es en sí una teoría: tiene postulados, fórmulas y parámetros recientemente establecidos con aplicaciones, por ejemplo, en las áreas de la meteorología o la física cuántica, y actualmente hay varios ejemplos de aplicación en la arquitectura a través de los fractales, por ejemplo el Jardín Botánico de Barcelona de Carlos Ferrater.

Fuente: Wikipedia

Advertisements