El grafeno es un miembro de una familia más amplia de estructuras en las que los átomos de carbono se unen en láminas planas, formando un panal de abejas hexagonal (con un átomo en cada vértice). Situados muchos panales uno sobre otro, se tiene grafito. Si se enrolla una porción de una de esas láminas en forma de esfera, como un balón de futbol, se producen fullerenos, unas moléculas de tan gran interés que a sus descubridores se les concedió el Nobel de Química del año 1996, tal como comentamos oportunamente en este periódico (véase http://servicios.laverdad.es/cienciaysalud/6_3_35.html). Si el panal se enrolla formando un cilindro se tiene un nanotubo de carbono. Y, un grafeno sería un único de esos panales extendido, una estructura casi plana, bidimensional, ya que su espesor es el de sólo un átomo.

Fue en el año 2004 cuando el grupo de Manchester y otro ruso, el del Dr. Kostya Novoselov, del Instituto para la Tecnología de la Microelectrónica en Chernogolovka, Rusia, publicaron en la revista Science los primeros hallazgos sobre este material. En el año 2005, junto con otros investigadores holandeses e, independientemente, Philip Kim y sus colaboradores de Columbia University, exploraron algunas de las propiedades electrónicas del grafeno y lo más actual es un artículo, enviado a publicar a la revista Physical Review Letters, así como una excelente y recentísima revisión en la revista Nature Material, sobre la consecución práctica de fabricación de las membranas de grafeno de un átomo de espesor, con aplicaciones prácticas muy diversas.

El grafeno conduce la electricidad mejor que muchos materiales metálicos, porque los electrones pueden viajar en línea recta entre los átomos sin dispersarse. Esto podría significar que unos componentes electrónicos basados en este material serían más eficientes y consumirían menos electricidad. Un hipotético chip confeccionado con este tipo de transistores sería más rápido y permitiría crear computadoras más veloces.

El primer transistor de grafeno fue presentado en 2004, pero no funcionaba muy bien al tener pérdidas de corriente y no poder pasar a un estado bajo convenientemente. Esto se debía precisamente a que los electrones se movían demasiado bien entre los átomos.

El transistor monoatómico estaba confeccionado enteramente en una lámina de grafeno. Los elementos centrales son puntos cuánticos que permiten a los electrones fluir de uno a uno. Los puntos cuánticos están conectados a una región más ancha que funciona como la barrera de los transistores de efecto túnel. Foto: University of Manchester.

A lo largo de los años, los transistores de silicio han ido reduciendo su tamaño hasta los 45 nanómetros (nm), tecnología de fabricación en la que se basa actualmente Intel y AMD, ésta última para los chipsets gráficos. Esto ha permitido que la Ley de Moore se haya cumplido hasta el momento y que, cada 2 años, el número de transistores en un circuito integrado se haya podido duplicar. De hecho, si se consulta el roadmap de Intel, ya existen previsiones para los 32 nanómetros a corto plazo, e incluso para los 10 nanómetros. Sin embargo, la utilización de transistores de silicio tiene el límite máximo en esta cantidad, 10 (nm), tamaño a partir del cual el material deja de comportarse de forma estable.

Los nuevos transistores de grafeno trabajarán a temperatura ambiente, condición imprescindible para poder formar parte de los dispositivos electrónicos modernos. Ahora es necesario descubrir un método práctico de fabricación, antes de que el desarrollo pueda utilizarse para aplicaciones comerciales. Ahora bien, la tecnología podrá aplicarse a transistores ultra rápidos, dispositivos micromecánicos y sensores de tamaño microscópico. Actualmente el proceso de fabricación de transistores incluye cierto elemento de suerte, lo que provoca que la mitad de los intentos realizados terminen en procesos defectuosos. No obstante, Novoselov destaca que pronto serán capaces de descubrir una metodología mucho más eficaz. Según lo indicado, parece que los chipsets fabricados a partir de grafeno será de vital importancia durante los próximos años para la industria tecnológica.

PROPIEDADES

Para el profesor Eaves, experto en semiconductores de la Universidad de Nottingham el del grafeno es el más excitante descubrimiento llevado a cabo en la última década en la física del estado sólido. Y para el Dr Novoselov, colaborador del Dr. Geim, lo más importante es que las consecuencias no se limitarán a la aparición de unos pocos materiales, sino a un nuevo conjunto de miles de ellos diferentes, con amplias gamas de aplicaciones particulares. De hecho, hace cuatro años se realizaron un par de tesis doctorales sobre el grafeno. Actualmente, varios centenares están en marcha. ¿Cuáles son sus sugerentes propiedades? Bastantes. He aquí algunas:

Los electrones interaccionan con el panal del grafeno y se pueden mover por las celdas hexagonales, a una velocidad solo cuatrocientas veces inferior a la velocidad de la luz, muy superior usual de los electrones en un conductor ordinario, lo que es suficiente para que exhiban comportamientos relativistas. Además, los electrones mantienen esta velocidad incluso a muy bajas temperaturas comportándose como si no tuviesen masa en reposo. Por ello, para poder estudiar la física de estos electrones es necesario utilizar la ecuación de Dirac para fermiones sin masa.

El paso de los electrones (electricidad) por el grafeno origina un efecto Hall cuántico que es imprescindible para su comportamiento como semiconductor. Pero mientras que otros semiconductores sólo presentan este efecto a temperaturas muy bajas, el grafeno lo mantiene bien incluso a temperatura ambiente, lo que le convierte en un excelente semiconductor y su conductividad eléctrica no decae por debajo de un valor mínimo, incluso cuando no hay electrones libres en el grafeno. Este resultado es completamente contraintuitivo pues en cualquier otro material la conductividad eléctrica desaparece cuando no hay cargas.

El grafeno, actuando como semiconductor estable y bidimensional permite que los electrones se muevan libremente por el camino que más convenga, no ceñidos a un camino recto como en los transistores convencionales basados en las capacidades semiconductoras del silicio, que es empleado para crear pequeñísimos tubos por donde fluye la corriente eléctrica. Además, al contrario que en otros sistemas bidimensionales que tengan pequeñas impurezas, en el grafeno los electrones no se pueden quedar aislados en zonas donde no puedan salir.

En resumen, el grafeno es un semiconductor que puede operar a escala nanométrica y a temperatura ambiente, con propiedades que ningun otro semiconductor ofrece y todo apunta a que se podrán crear nuevos miniaturizados dispositivos electrónicos insospechados con este material, pudiéndonos acercar rápidamente a la prometedora computación cuántica, por lo que, previsiblemente toda la humanidad se verá favorablemente afectada. Aunque la realidad de sus aplicaciones no se evidenciará hasta que aparezcan los primeros productos comerciales, su importancia es ya enorme en la física fundamental porque gracias al nuevo material los fenómenos relativísticos cuánticos, algunos de ellos no observables en la física de alta energía, pueden ahora reproducirse y probarse en experimentos de laboratorio relativamente sencillos. Así ha sucedido con algunos aspectos de la teoría de la Relatividad de Einstein.

FABRICACIÓN

Cuando escribimos con un lápiz la fricción con el papel arranca haces de láminas, débilmente unidas entre sí, y las deposita en forma de escritura sobre la superficie del papel. Posiblemente, estamos produciendo también multitud de capas invisibles de grafeno. En los laboratorios, se obtuvo con sorprendente facilidad, frotando una porción microscópica de grafito sobre un chip de silicio, con lo cual quedaban depositadas alrededor de un centenar de láminas superpuestas. El silicio se puede disolver en ácido o bien se puede usar una cinta adhesiva para separar las láminas. En este último caso se pliega la cinta adhesiva para que quede pegada a las dos caras de la lasca de grafito y se abre de nuevo, con lo que se consigue la separación de láminas. Repitiendo la operación varias veces las láminas obtenidas son de menor espesor, hasta conseguir la monocapa de grafeno de un átomo de espesor. Hace unos meses los becarios de la Universidad de Columbia participantes en los proyectos sobre grafeno recibían por la labor anterior 10$ la hora. Como es lógico, ya existen varios proyectos industriales en desarrollo para la fabricación industrial de grafeno, siendo el más avanzado el del Georgia Institute of Technology usando láminas de carburo de silicio calentadas a 1300 °C, de modo que los átomos de silicio se van evaporando de la superficie mientras que los átomos de carbono que no se evaporan se van restructurando en forma de láminas de grafeno.

Fuente: http://servicios.laverdad.es/ababol/pg070519/suscr/nec9.htm

Molibdenita el material que compite con el grafeno